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We study avalanche dynamics and local activity of forced-flow imbibition fronts in disordered media. We
focus on the front dynamics as the mean velocity of the interface v̄ is decreased and the pinning state is
approached. Scaling arguments allow us to obtain the statistics of avalanche sizes and durations, which become
power-law distributed due to the existence of a critical point at v̄=0. Results are compared with phase-field
numerical simulations.
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In many physical systems, the response to a slow external
driving usually involves avalanches or bursts. Different ex-
amples are found in fracture cracks �1�, granular material �2�,
or earthquakes �3�, among others. A particularly interesting
problem in this context is the dynamics of fronts during im-
bibition of fluids in porous media �4�, with its many engi-
neering applications in fluidics and oil-recovery technology.

Imbibition in disordered media occurs when a viscous
fluid, which wets the medium preferentially, displaces a less
viscous fluid �typically air� and therefore, at relatively low
injection rates, stable fronts separating the two phases are
formed �for a recent review on imbibition, see Ref. �5��. In
the case of forced-flow imbibition, the spatially averaged ve-
locity of the liquid-air interface v̄ is kept constant by means
of a constant injection rate. Then, for relatively low veloci-
ties, the invading fluid advances in the form of spatially lo-
calized events or avalanches, as occurs in other disordered
systems.

Avalanche dynamics in imbibition is expected to be re-
sponsible for the front velocity fluctuations. Rost et al. �4�
recently showed that in the case of imbibition, which is a
locally conserved process, velocity fluctuations are con-
trolled by a length scale �� arising from fluid conservation.
This characteristic length scale introduces a natural cutoff in
the distribution of avalanche sizes and durations, which leads
to noncritical avalanche distributions and is ultimately re-
sponsible for the lack of correlated fluctuations at large dis-
tances. The scaling behavior of the velocity fluctuations can
then be derived by making use of the central limit theorem
�4�. Forced-flow imbibition described by avalanches with a
fixed cutoff size has been experimentally observed in the
recent work by Planet et al. �6� by means of analyzing the
global velocity time series v̄�t�.

In this Rapid Communication we study the statistics of
local avalanches of activity in forced-flow imbibition in dis-
ordered media. We analyze the mesoscopic behavior of the
interface by monitoring locally active sites, i.e., those sites
that are moving at a given time, which define the actual
avalanche taking place in the system �see Fig. 1�. We show
that avalanche sizes and durations become power-law dis-
tributed for low enough injection rates due to the existence
of a critical point at v̄=0. The singularity appearing as v̄
→0 affects the value of the critical exponents that character-
ize the front dynamics and morphology, namely, the ava-
lanche exponents, as well as the roughness exponents. This
leads to effective exponents even for finite velocities. We

obtain scaling relations connecting the roughness exponents
and the avalanche exponents. Our scaling theory is compared
with numerical results of a phase-field model for imbibition.

Only in the last few years it has been possible to achieve
a satisfactory theoretical understanding of imbibition, based
on a detailed description of the physical forces that play a
relevant role at different spatial scales �5�. Surface tension �
tends to flatten the front at short length scales, while
quenched disorder in both capillary pc�r� and permeability
K�r� makes the front roughen and fluctuate around its aver-
age position. Both disorders operate at very different length
scales, separated by a crossover length that depends on the
velocity as �K�1 / v̄ �5,7�. We are concerned here with the
interesting case of a slowly advancing front, i.e., the capil-
lary dominated regime, where the permeability disorder is
irrelevant and can be considered to be a constant K�r��K0.
Different theoretical approaches �7–9� have arrived at the
conclusion that, for small deviations around the mean inter-
face position, the dynamical evolution for the liquid-air in-
terface is described in Fourier space as

�tĥk = − �K0�k�k2ĥk − v̄�k�ĥk + K0�k��̂k, �1�

where �̂k�ĥ� are the Fourier components of the capillary dis-
order at some coarse-grained scale. From Eq. �1� one can
easily see that there exists a crossover length

�� � ��K0

v̄
�1/2

, �2�

such that interface fluctuations are uncorrelated above this
typical scale. Indeed, several numerical studies �8,10–12�
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FIG. 1. �Color online� �a� Typical avalanches of the front h�x , t�
from our phase-field simulations for v̄=v0 /40� and clip cth=3. �b�
Spatiotemporal activity is characterized by the size s, lateral extent
�, and duration T of avalanches.
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have shown that the interface is asymptotically flat on length
scales larger than ��, introducing then a natural cutoff in the
system. For capillary-induced fluctuations we have ����K,
so that the permeability disorder can be ignored.

(a) Avalanche statistics. In order to monitor local ava-
lanches of forward movements we proceed as follows. First,
we define the active sites on the interface as those where the
local velocity v�x , t�	�th�x , t� takes values above some
fixed threshold, v�x , t��cthv̄, where cth is some arbitrary
constant and v̄ is the spatially averaged global velocity. An
avalanche is defined as a connected cluster of active
�v�x , t��cthv̄� sites surrounded by nonactive �v�x , t�	cthv̄�
sites �see Fig. 1�.

Avalanches exhibit a typical size �volume� 
s���� for an
event of lateral spatial extent �. For a given front velocity v̄
we expect the average avalanche size to scale with the lateral
extent up to the cutoff length scale, 
s������D for ����

� v̄−1/2, where D is the avalanche dimension exponent that
can be easily related with the local roughness exponent 
loc
via the local width of the interface fluctuations w���. One has

s����� ldw�����d�
loc, and D=d+
loc in d+1 dimensions.
In particular, for d=1, one observes that 
loc=1 �8–10,13�
and then D=2. We also expect to observe a scaling relation

s�T���T� between an avalanche of duration T and its size
below a certain time cutoff T�.

In order to study the statistics of the avalanche dynamics,

we first calculate the probability densities Ps�s� and PT�T�
for having avalanches of size s and duration T, respectively.
Due to the existence of the intrinsic crossover length in the
imbibition problem, the several avalanche probability distri-
butions are not generically expected to be critical, but expo-
nentially decaying functions,

P���� � �−�� exp − ��/��� , �3�

where P���� is the marginal probability density function
�PDF�; the index � denotes the size s, the lateral extent �, or
the duration T of avalanches; and �� is an exponent. The
distribution cutoff depends explicitly on v̄ and, in particular,
the maximum avalanche size is given by

s� � ��
D � �v̄�−D/2. �4�

This cutoff diverges ���→
� as the control parameter v̄
→0, which renders critical avalanches expanding over the
whole system. This divergence is very strong, s���v̄�−1, al-
ready in d=1, which—in turn—is expected to be reflected in
long-tailed avalanche distributions even for finite values of v̄
�see Fig. 2�.

Let us now consider the joint probability P�s ,� ,T� for
having an avalanche of size s, extent �, and duration T. At
the critical point v̄=0 scale-invariant behavior implies
P�s ,� ,T�=b�P�bDs ,b� ,bzT� for any scaling factor b�0.
Here, z corresponds to the interface dynamic exponent. Inte-
grating over two of the arguments one obtains the marginal
PDFs and the scaling relations

�T = 1 +
D

z
��s − 1�, �� = 1 + z��T − 1� . �5�

They connect the avalanche activity exponents ��T ,�s ,���
with the dynamics of the front �z� in the case of scale-
invariant avalanche dynamics. Note that in this limit long-
range interface correlations fully coincide with avalanches of
correlated events. This basically means that an avalanche
occupies a significant fraction of lateral extent of the system
and cooperative correlated motion over large scales does oc-
cur. Accordingly, close to the pinning critical point we have

���T1/z. These scaling relations immediately imply 
s�
�TD/z, so the exponent � relating avalanche sizes versus
durations becomes

� = D/z = �d + 
loc�/z , �6�

in the limit v̄→0.
This result is to be contrasted with the scaling relation

obtained in a recent work by Rost et al. �4�. They analyzed a
regime of relatively high velocities for which the length scale
�� is very small as compared with the system size L. In this
regime avalanches are very narrow and one can decompose
the front motion in independent spatially localized ava-

lanches of forward moves, v̄ava��h̄ /���dv̄. The avalanche
duration is T�w��� /v���, where v��� is the front velocity
over the region of size � spanned by the avalanche. If simul-
taneous avalanches are narrow and independent events, a
central limit theorem argument gives v�����−d/2 and this
leads to 
s�T���T�, with �4�
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FIG. 2. �Color online� �a� Distribution of avalanche size for
different velocities. The dashed curves correspond to a data fit to
P�s�=as−�s exp�−s /s��v̄��. The solid line fits the power-law regime
for the smallest velocity. The inset shows the cutoff s� of the ava-
lanche size distribution for each velocity with a guide-to-eye line of
slope −1. �b� Distribution of avalanche durations. The inset shows a
comparison for different choices of the arbitrary threshold cth from
3 to 20 in the case of v̄=v0 /40=5�10−5 a.u.
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� = �
loc + d�/�
loc + d/2� , �7�

in d+1 dimensions. In particular, for d=1 one has the pre-
diction �=4 /3 �4�. Interestingly, this argument also leads to
the scaling relation 
��T���T�, with an exponent �
=1 / �
loc+d /2� that differs from 1 /z, where z=3 is the dy-
namic exponent describing the correlation spreading of inter-
facial fluctuations for forced-flow imbibition in d=1 �9–13�.
This indicates that the propagation of interface correlations is
decoupled from the avalanche dynamics. Indeed, as it will be
shown below, the scaling theory leading to Eq. �7� is valid in
a velocity regime such that the characteristic length scale is
negligible as compared with the system size, ���L. For
lower front velocities, when �� becomes comparable with
the system size, the exponent � should tend to the value
given by Eq. �6� instead of Eq. �7�.

(b) Scaling properties in the static limit. The interface
scaling exponents can be obtained by a scaling theory which
is expected to be valid in the static �pinned state� limit v̄
→0. In the pinned state the velocity-dependent term in Eq.
�1� cancels and the geometric properties of the front can be
described by the balance between surface tension and capil-
lary disorder, which in real space can be written as
��2hp�x�+��x��0, where hp�x� is the pinned state configu-
ration and the disorder is delta correlated, 
��x���x���=�0

2

+�2��x−x��, with a mean value 
��x��	�0 and variance
�2−�0

2. Applying a scaling transformation, x→bx and hp
→b
hp, scale invariance holds for a global roughness expo-
nent 
=3 /2 for the pinned state configuration. Small pertur-
bations of the pinned state �h are assumed to relax toward
another of the infinitely many pinned configurations accord-
ing to

�t��h� = �K0�
2��h� + K0��x� , �8�

which leads to the exact interface exponents z=2, 
=3 /2,
and 
loc=1 at the critical point v̄=0 for d=1. These expo-
nents can now be replaced in the avalanche scaling relations
�5� and �6� to obtain �T=�s, ��=2�T−1, and �=1, where we
have used D=d+
loc=2 in d=1. In the following we com-
pare these scaling results with numerical integrations of a
phase-field model as one approaches the singular point v̄
=0.

(c) The phase-field model. The scaling properties of fluid
imbibition fronts can be well described by means of a phase-
field model �8–12�. A conserved field � is used to represent
the two existing phases, taking the equilibrium values �eq
=+1 and �eq=−1 in the liquid and air phases, respectively.
The dynamics of the phase field is controlled by a continuity
equation based on a time-dependent Ginzburg-Landau model
with conserved order parameter �t�=�M ��, where �
=�F /�� is the chemical potential and the free energy takes
the form F���=
dr������2 /2−�2 /2+�4 /4−��r���. The
quenched random field ��r��0 models capillary disorder
and favors the liquid �wet� phase, forcing the interface to
advance at the expense of the air �dry� phase. In our numeri-
cal model we have used a spatially distributed dichotomic
quenched noise in a two-dimensional system. The locally
conserved dynamics is described by

�t� = �M � �− � + �3 − �2�2� − ��r�� , �9�

where M is a mobility parameter, which we take constant at
the liquid phase ���0� and zero at the air phase ��	0�,
and the disorder is Gaussian with a correlator 
��r���r���
= 
��2+ 
�2���x−x��. Equation �9� is then integrated in the
“weak” disorder case �11�, i.e., when the disorder intensity is
much smaller than the dimensionless surface tension, in a
system size of L=512 and 25 disorder realizations with �
=1, and the forced-flow boundary condition ��=−v̄ŷ is im-
posed at the bottom of the system �10�. All the values for the
average front velocity have been normalized to a reference
value v0=0.002, which corresponds to the highest value
studied in this Rapid Communication.

(d) Numerical results. Figure 2 shows the avalanche size
and the duration statistics calculated using a threshold cth
=3. We observe that the probability distributions tend to a
power law as v̄ is decreased, due to the divergent cutoff �cf.
Eq. �4��. We estimate the exponents �s�1.54�5� and �T
�1.62�6� from the scaling of the data. Despite the smallest
velocity we were able to reach v̄=v0 /40=5�10−5, which is
still far from zero; the scaling region is reasonably good.
According to our scaling theory both exponents should ex-
actly coincide at the critical point, which is consistent with
the numerical values within the error bars. We also plot a
direct estimate of the divergent avalanche size cutoff in good
agreement with Eq. �4�.

We also find an excellent agreement with our prediction in
Eq. �6� for the scaling relation between size and duration of
an avalanche, 
s�T���T�. In Fig. 3 we plot both avalanche
size and lateral extent vs time for two typical velocities. For
the lowest velocity we studied v̄=v0 /40=5�10−5, we esti-
mate ��1.09�7�, which is to be compared with �=1 from
Eq. �6� in d=1. This can also be compared with the scaling
relations between the avalanche exponents �s and �T given by
Eq. �5�. Substituting the numerical values �=1.09 and �T
=1.54, we predict �t�1.60, which is in good agreement with
the numerical result �cf. Fig. 2�. Note that the scaling theory
is expected to be exact only at the critical point v̄=0, which
is not actually reached with our phase-field model results.
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FIG. 3. �Color online� Average avalanche size and lateral extent
versus duration in a system of size L=512 for two velocities in the
different dynamical regimes discussed in this Rapid Communi-
cation.
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However, the singularity is strong enough to lead to effective
exponents for velocities within a critical region v̄�L−2.

At variance with Rost et al. �4�, who only monitored ava-
lanches in the global velocity time series v̄�t�, here we are
actually looking at active sites that participate in an ava-
lanche and, therefore, we are able to check the validity of the
scaling law 
���T�. The typical lateral extent is predicted to
scale with avalanche duration with an exponent �=1 / �
loc
+d /2�=2 /3 in the high velocity regime for d=1 �4�, in ex-
cellent agreement with our numerical estimate in Fig. 3.
However, for low velocities we predict �=1 /z=1 /2 with the
dynamic exponent z=2 in the static limit. A strong proof of a
distinctive behavior as the front velocity is decreased can be
readily seen in Fig. 3. Our numerical simulations indicate
that �→1 and 
���T1/2 as v̄→0, pointing out that the dy-
namics is controlled by the static critical point at v̄=0.

On the other hand, we have also estimated the scaling of
the interfacial fluctuations for states close to the static limit.
This provides an independent check of the validity of our
scaling relations in Eqs. �5� and �6� connecting avalanche
and roughness exponents. From the structure factor S�k , t�
= 
�hk�t��2� and local width in Fig. 4, we estimate the global,
local, and spectral roughness exponents �14� 
=1.50�3�,

loc=1, and 
s=1.45�6�, respectively, and the dynamic ex-
ponent z=2.09�6� in excellent agreement with our scaling
theory for the pinned state.

Finally, we claim that the existence of a singular behavior
as v̄→0 and the extent of the critical region v̄�L−2 explain
earlier numerical observations �5,10� that reported a depen-
dence of the critical exponents 
�v̄� and z�v̄� with the veloc-

ity in numerical results of forced-flow imbibition in finite
systems. Table I summarizes the different interfacial scaling
exponents we observed for different velocities. We observe
that as the static limit is approached the dynamic exponent
z→2 and the roughness exponent 
→3 /2, as corresponds to
the pinned state.

To conclude, we have studied avalanche dynamics in
forced-flow imbibition in the pinning limit v̄→0. A scaling
theory relating the roughness of the front with the avalanche
dynamics has been developed in excellent agreement with
numerical results. Our scaling analysis is based on the pres-
ence of long-range correlations due to the divergent charac-
teristic length scale at v̄→0. From an experimental point of
view, it would be of great interest to explore the pinning
limit. In the experimental setup of a Hele-Shaw cell �6�, this
limit may be achieved by putting the cell at an angle so that
gravity plays a role. This setup should produce fronts near
pinning. Note that already in the case of having a correlation
length of about a 30% of the system size, the effect of the
critical point should show up in a drift of the measured scal-
ing exponents �see Table I�. Alternatively, fluctuations
around the critical point v̄=0 could also be experimentally
tested by setting the cell at an angle, so that the front is
pinned, and then study how the system responds to a small
angle variation. In this configuration we expect the front to
jump from one pinned state to another following a relaxation
dynamics described by Eq. �8� driven by avalanches de-
scribed by Eqs. �5� and �6�.
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FIG. 4. �Color online� Scaling of the front roughness in the
phase-field simulations for L=512 in the low velocity v̄=v0 /40
limit. �a� Structure factor S�k , t� at different times giving a spectral
roughness exponent of 
s=1.45�6� �14�. �b� Data collapse of the
local width according to a super-rough scaling for 
=1.50�3�,

loc=1.0, and z=2.09�6�.

TABLE I. Correlation extent and effective scaling exponents
from phase-field simulations at different velocities in a system of
size L=512. The fronts are always super-rough with 
loc=1 �14�.

v̄ �� /L 
 z �

v0 0.1 1.33 3 1.28

v0 /5 0.23 1.35 2.8 1.21

v0 /20 0.48 1.41 2.3 1.13

v0 /40 0.64 1.50 2.09 1.09
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